FUNCION
Una
función es una correspondencia entre conjuntos que se produce cuando
cada uno de los elementos del primer conjunto se halla relacionado con
un solo elemento del segundo conjunto. Estamos en presencia de una
función cuando de cada elemento del primer conjunto solamente sale una
única flecha.No estamos en presencia de una función cuando:
- De algún elemento del conjunto de partida no sale ninguna flecha.
- De algún elemento del conjunto de partida salen dos o más flechas.
A veces esta 'máquina' no funciona con determinados valores. Al conjunto de valores de la variable para los que la función existe (para los que la 'máquina' funciona) se llama dominio de definición de la función.
Una función obtiene un valor, pero esto no quiere decir que se obtengan todos los valores que se nos antojen. El conjunto de valores que se obtienen a partir del conjunto de valores del dominio de definición se llama recorrido de la función.
CLASIFICACION DE LAS FUNCIONES
- Función Inyectiva:
Para determinar si una función es inyectiva, graficamos la función por medio de una tabla de pares ordenados. Luego trazamos líneas horizontales para determinar si las y (las ordenadas) se repiten o no.
Ejemplo:
- Función Sobreyectiva:
A elementos diferentes en un conjunto de partida le corresponden elementos iguales en un conjunto de llegada. Es decir, si todo elemento R es imagen de algún elemento X del dominio.
Ejemplo:
A = { a , e , i , o , u }
B = { 1 , 3 , 5 , 7 }
f = { ( a , 1 ) , ( e , 7 ) , ( i , 3 ) , ( o , 5 ) , ( u , 7 ) }
Simbólicamente:
f: A B es biyectiva Û f es inyectiva y f es sobreyectiva
Ejemplo:
- Función Biyectiva:
Si cada elemento de B es imagen de un solo elemento de A, diremos que la función es Inyectiva. En cambio, la función es Sobreyectiva cuando todo elemento de B es imagen de, al menos, un elemento de A. Cuando se cumplen simultáneamente las dos condiciones tenemos una función BIYECTIVA.
Ejemplo:
A = { a , e , i , o , u }
B = { 1 , 3 , 5 , 7 , 9 }
f = { ( a , 5 ) , ( e , 1 ) , ( i , 9 ) , ( o , 3 ) , ( u , 7 ) }
Teorema:
Si f es biyectiva , entonces su inversa f - 1 es también una función y además biyectiva.
Ejemplo:
- Función Par:
" x " R vale f(-x) = f(x)
Si f: R!R es una función par, entonces su gráfico es lateralmente simétrico respecto del eje vertical. “Simetría axial respecto de un eje o recta” (el dominio tiene que ser un conjunto simetrico respecto al origen)
Se dice que una función es par si f(x) = f(-x)
Ejemplo: La función y = x2 es par pues se obtienen los mismos valores de y independientemente del signo de x.
La función f(x)=x2 es par ya que f(-x) = (-x)2 =x2
- Función Impar:
" x " R vale f(-x) = -f(x)
Si f: R!R es una función impar, entonces su gráfico es simétrico respecto del origen de coordenadas. “Simetría central respecto de un punto”. (el dominio tiene que ser un conjunto simetrico respecto al origen)
En el caso de que f(x) = -f(-x) se dice que la función es impar. Muchas funciones reales no son pares ni impares.
Ejemplo: La función y(x)=x es impar ya que: f(-x) = -x pero como f(x) = x entonces: f(-x) = - f(x).
- Función Creciente:
f( x1 ) < f( x2 ).
Se dice estrictamente creciente si de x1 < x2 se deduce que f(x1) < f(x2).
Una función f se dice que es creciente si al considerar dos puntos de su gráfica, (x1, f(x1) ) y ( x2, f(x2) ) con
| x1 | < | x2 | Se tiene que | f(x1) | < | f(x2). |
Prevalece la relación <
| ||||||
f(x) £ f(a) si x pertenece a (a - e, a) y
f(x) ³ f(a) si x pertenece a (a, a + e).
En este video aprenderán un poquito más